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Abstract 

 

When interlocutors repeatedly describe referents to each other, they rapidly converge on 

referring expressions which become increasingly systematized and abstract as the interaction 

progresses. Previous experimental research suggests that interactive repair mechanisms in 

dialogue underpin convergence. However this research has so far only focused on the role of 

other-initiated repair and has not examined whether self-initiated repair might also play a role. 

To investigate this question we report the results from a computer-mediated maze task 

experiment. In this task, participants communicate with each other via an experimental chat 

tool, which selectively transforms participants’ private turn-revisions into public self-repairs 

that are made visible to the other participant. For example, if a participant, A, types “On the top 

square”, and then before sending, A revises the turn to “On the top row”, the server 

automatically detects the revision and transforms the private turn-revisions into a public self-

repair, e.g. “On the top square umm I meant row”. Participants who received these transformed 

turns used more abstract and systematized referring expressions, but performed worse at the 

task. We argue that is due to the artificial self-repairs causing participants to put more effort 

into diagnosing and resolving the referential coordination problems they face in the task, 

yielding better grounded spatial semantics and consequently increased use of abstract referring 

expressions. 
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1. Introduction 

 

A central finding in dialogue research is that when interlocutors repeatedly describe referents 

to each other, they rapidly converge on a shared set of referring expressions (Krauss and 

Weinheimer, 1966; Clark and Wilkes-Gibbs, 1986), which become progressively systematized 

and abstract (Healey, 1997; see Table 1 below). This occurs for a wide range of referents, e.g., 

when describing spatial locations (Garrod and Doherty, 1994; Mills, 2014;  Nölle, Fusaroli et 

al, 2020; Castillo, Smith and Branigan, 2019), geometric figures (Bangerter, Mayor et al., 2020), 

bodily features (Tylen, Fusaroli et al., 2020), music (Healey et al., 2007), conceptual structures 

(Schwartz, 1995), confidence (Fusaroli et al., 2012), temporal sequences (Mills, 2011; Verhoef 

et al., 2016), and also when describing how to manipulate physical objects (Shirozou et al., 

2002). 

        Convergence on referring expressions is intrinsically interactive. Each pair of participants 

typically creates their own, idiosyncratic conventions for the same referents depending on their 

specific interaction history (Garrod and Doherty, 1994; Healey, 1997). Yet the development of 

abstraction is not simply due to the coordination problem of creating a novel referring 

expression: once referring expressions have been used successfully, they continue to develop 

in predictable directions (Garrod, 1999; Healey, 2004; See also Table 1 below). The emergence 

of abstract referring expressions also occurs across modalities: in spoken interaction (Pickering 

and Garrod, 2004), text-based messaging (Healey and Mills, 2006), gesture (Nölle, Staib et al 

2018; Motamedi, Shouwstra et al., 2019; Macuch et al., 2020), whistle-based language (Verhoef, 

Roberts and Dingemanse 2015), and in graphical, mediated interaction (Healey et al., 2001; 

Theisen, Oberlander and Kirby, 2010; Roberts, Lewandowski and Galantucci, 2015). 

       Further, the quality of the interaction directly affects the development of coordination. If 

interlocutors are prevented from providing each other with feedback, e.g. by being prevented 

from drawing on each other's drawings, this impedes the development of abstract referring 

expressions (Healey et al., 2007). Similarly, in multiparty interaction, convergence occurs at a 

different rate between fully ratified participants than between participants and overhearers who 

have limited opportunities for engaging in the interaction (Healey and Mills, 2006; see also 

Kühlen and Brennan, 2013). 

 
Table 1 Global development of abstract descriptions in the maze game.  Initially participants use descriptions that 

typically rely on visually salient features of the maze, e.g. the “sticking out part” or “large block of squares on the 

right”. As the task progresses, participants develop more systematized descriptions which conceive of the mazes 

as consisting of squares aligned in columns (e.g. “fourth column from right 3rd square”). By the end of the 

experiment, the most coordinated pairs tend to use extremely concise Cartesian coordinate descriptions which 

conceive of the mazes as consisting of rows and columns. 

Initially You need to go to my switch which is all the way at the top right on the 

 sticking out part on the left. 

5 min That’s me done, can you go two down from the large 

block of squares on the right 

10 min You need to go to the middle column last square 

15 min I`m on the fourth column from right 3rd square 

20 min Wait then go 5th column topmost square 

30 min Went back to 4th column 1st square 

35 min 3rd col from left, row 7 from top 

40 min Then 2c r 6. yours? 

45 min 5, 7 

 

 



Cumulatively, these findings suggest that processing that occurs in interaction places important 

constraints on the semantic negotiation of referring expressions (see also Freyd, 1983). 

However, there is currently no consensus about which mechanisms are involved. 

        One important source of constraints comes from individuals’ cognitive biases (Kirby, 

Cornish & Smith, 2008). On this view, simply being exposed to another’s linguistic output 

should suffice to drive abstraction, e.g. in an iterated learning chain (Kirby, Griffiths and Smith, 

2014). But when non-interacting participants are exposed to exactly the same signs as 

interacting dyads, the signs that are subsequently produced by the non-interacting participants 

are less effective and less efficient (Fay, Walker et al., 2018), demonstrating the importance of 

inter-individual, as opposed to intra-individual processes occurring in interaction. 

        A parsimonious account for inter-individual coordination is provided by the Interactive 

Alignment model (Pickering and Garrod, 2004), which proposes that convergence arises as a 

consequence of automatic mutual priming. But this does not fully explain convergence: priming 

is intrinsically conservative (Healey, 2004): once a particular form is the most successfully and 

widely used by a group, there is no mechanism to explain how it might be supplanted by another. 

Yet interlocutors do not settle on abbreviated forms of the initially most frequently used 

referring expression in a “winner-takes-all” process. Interlocutors continue to develop novel 

and more abstract descriptions throughout the interaction (see Table 1). The priming account 

also does not explain conversational routines that do not involve lexical repetition or syntactic 

parallelism, e.g. adjacency pairs (Schegloff, 2007; Clark, 1996), which often consist of 

complementary pairs of different types of contribution. In fact, patterns of local imitation of 

turns are worse statistical predictors of dialogue coordination than patterns of different, 

complementary turns (Fusaroli and Tylen, 2016), while indiscriminate, local imitation is 

actually associated with unsuccessful dialogue (Fusaroli et al., 2012). 

 

 

1.1. Miscommunication drives abstraction 

 

An alternative account is provided by Healey (2008), Healey, Mills and Eshghi (2018) who 

argue that the interactive mechanisms associated with miscommunication play a central role in 

the development of abstract descriptions. Although historically miscommunication has been 

treated as a phenomenon to be avoided by interlocutors (Healey, de Ruiter, and Mills, 2018), 

research in conversation analysis has revealed how miscommunication involves a family of 

intricate interactive “repair” mechanisms that are used by interlocutors to sustain coordination 

(Schegloff, 1992; Dingemanse et al., 2015). For example, consider Example 1: 

 

Example 1 

A Move to the third square second row 

B third? 

A from the right 

 

In this example, participant B has trouble understanding how A is counting squares within a 

row. B signals this trouble by repeating the problematic element “third”, which A then clarifies. 

Similarly, in Example 2: 

 

Example 2 

A I’m in row 6 column 7 

B huh? 

A next to the clump of squares that looks like an arm sticking out 

 



In this example, participant B is unable to precisely specify the problem. So B uses an open-

class repair, “huh?” (Drew, 1997), to signal problematic understanding, leading A to fully 

reformulate their turn with an easier to understand, less abstract, description.  

        According to the repair-based account of Healey et al., such repair sequences allow 

interlocutors to identify potential divergences of interpretation with their conversational partner 

concerning the semantics of referring expressions, and then interactively resolve these 

divergences. Findings from a set of maze-task experiments (Healey, 2007; Healey and Mills, 

2006; Mills and Healey, 2006; Mills, 2014; Healey, Mills, et al. 2018) provide evidence for 

repair-driven convergence.  In this task, pairs of participants collaboratively solve mazes. This 

presents participants with the recurrent need to refer to spatial locations (see Figure 1 for an 

example maze configuration).  A consistent finding is that participants initially start out using 

descriptions which identify visually salient features of the maze, e.g., “the sticking out part”, 

“at the end of the arm”. Over the course of the experiment, participants progressively use more 

abstract descriptions, e.g., “longest row 5th square”, while the most co-ordinated pairs converge 

on more complex abstract Matrix descriptions such as “A5”, “2,1”, or “row 3 column 4” (see 

also Table 1). These descriptions are more difficult to coordinate on as their successful use 

requires coordinating on counting conventions (Healey, 2004). In a particular use, a description 

such as “D4”, is a compact expression of a meaning like: “4 across from the leftmost edge of 

the maze window, counting the edge as zero, and counting the missing boxes and counting 3 

boxes up from the lower edge of the window” (Mills, 2014). In order for participants to converge 

on such Matrix schemas, they first need to establish how to count rows and columns, whether 

to count from 0 or 1, whether “rows” can also be vertical, whether to count missing nodes, etc. 

(Healey, 2004). This is accomplished interactively, via repair, as it allows participants to 

identify, diagnose, and resolve any differences in interpretation (Healey, Mills and Eshghi, 2018; 

see also Woensdregt and Dingemanse, 2020; van Arkel, Woensdregt, Dingemanse and 

Blokpoel, 2020; Bjørndahl, Fusaroli et al., 2015;  Micklos, Walker and Fay, 2020).  

 

 

1.1.1. Manipulating miscommunication 

 

To investigate experimentally the role played by repair, Mills and Healey (2006; 2008) 

conducted an experiment in which participants communicated via an experimental chat-tool 

which inserts artificial repairs into the interaction. The repairs appear, to participants, to 

originate from each other.  In Examples 3 and 4 below, the second turn is an artificial repair 

produced by the server that appears to A as originating from participant B.  

 

 

Example 3 

A Go to 3rd row 2nd column 

B row? (produced by the server) 

A yeah counting from the top 

 

 

Example 4 

A My switch is at 4,5 

B huh? (produced by the server) 

A it`s next to the sticking out part 

 

 

Participants who received such artificial repairs produced fewer abstract descriptions, 

suggesting that, when participants encounter difficulties, they resort to less abstract descriptions 

that rely on visually salient features of the maze, which are easier to co-ordinate on.  



       A similar method was used in a subsequent experiment (Healey, Mills and Eshghi, 2018) 

which used the chat-tool to automatically detect instances of naturally occurring repair and 

amplify their severity. For example, in the following conversation, B’s repair “5th?” is 

intercepted and transformed into “what?” and sent to A. 

 

 

Example 5 

A go to the 3rd row 2nd column 

B 3rd? (intercepted by server, not sent to B) 

B what? (transformed turn sent to B) 

A go to 3rd row 2nd column from the right 

 

 

Participants who received these manipulations produced more abstract descriptions, while the 

manipulations had no other discernible effect on task performance. Healey, Mills and Eshghi 

(2018) explain this pattern as being due to these interventions exacerbating the apparent severity 

of actual “trouble” in co-ordinating on the semantics of referring expressions. Participants 

respond to this increased severity by putting more effort into diagnosing and resolving the 

problem, yielding better grounded spatial semantics and consequently increased use of abstract 

descriptions. 

 

 

1.2. Self-repair 

 

In addition to the types of repair discussed above, speakers can also modify their own utterance 

with a so-called self-repair (Schegloff, 2007) e.g., “Move to the top row uhh I mean first row”. 

From a cognitive perspective, self-repair can be attributed to the inexorable incrementality of 

processing (Gregoromichelaki et al, 2020; Hough, 2014). In addition, self-repairs are associated 

with better planning and coordination in effective team communication (Gervits, et al., 2016), 

are indicative of speakers adapting their descriptions to the perspective of their partner (Clark 

and Wilkes-Gibbs, 1986; Clark and Krych, 2004), and can have a beneficial effect on 

comprehension (Brennan and Schober, 2001).  

 

 

1.3 Research questions 

 

In summary, experimental research suggests that convergence on abstract referring expressions 

is underpinned by participants identifying, diagnosing, and resolving differences in 

interpretation via repair.  However, experiments that experimentally manipulated repair have 

focused solely on other-initiated repair, thus perhaps missing how self-repair might be an 

important mechanism underpinning semantic change and adaptation in interaction. To address 

this question, we describe an experiment which investigates whether participants who play the 

maze task and whose (covert) self-repair efforts are artificially upgraded to public signals will 

also be induced to use more abstract descriptions. 

 

 

 

2. Method 

 

2.1. The maze task 

 



The maze task is a computer-mediated version of the maze game experiments conducted by 

Garrod and Anderson (1987) and Garrod and Doherty (1994). Pairs of participants sit in 

different rooms in front of a computer screen which displays (1) the maze application and (2) a 

chat window for communicating with each other (see Figure 1). 

 

 

 

Figure 1 Each participant has two windows on their screen. The top window displays a maze configuration 

consisting of interconnected nodes. Each participant`s maze has a goal location marked with a red cross.  The paths 

to the goal are blocked by gates which can only be opened if the other participant moves their position marker to 

a location that corresponds to a grey switch location that is only visible on one player`s screen. In order to get to 

the goal and solve the maze, participants have to open their gates by getting their partner to go onto a switch that 

only the player can see on their screen. This creates a recurrent co-ordination problem of participants guiding each 

other onto each other`s switches. Participants play 12 randomly generated mazes, with a timeout of 5 minutes: If 

they fail to complete a maze in 5 minutes, the next maze is automatically loaded. The lower window contains the 

chat interface used by participants to communicate with each other. In this dialogue P1 originally typed “Am on 

top row”, then subsequently deleted “top row” and replaced it with “first row”. These private deletions are 

transformed by the server into a self-repair and sent to P2`s screen. 

 

 

2.2. Manipulation: transforming private turn-revision into self-repairs 

 

Participants communicate with each other via a custom AI-mediated (Hancock, Naaman & 

Levy, 2020) instant messaging program (see Figure 1). The instant messaging program consists 

of two windows. The top window shows the conversation history; the lower window is a turn-

formulation window in which participants type their turn privately before sending it by pressing 

ENTER. All participants’ keystrokes are sent to the server which analyzes what they type and 



automatically transforms participants’ private turn-revisions into self-repairs that are made 

visible to the other participant. For example, suppose a participant types the following: 

 

Participant1: Go to the square on the left, next to the big block on top. 

 

And then, before pressing ENTER, the participant edits the turn to: 

 

Participant1: Go to the square on the left, next to the third column 

 

The chat server automatically identifies the deleted portion of the turn, appends an editing 

expression (Levelt, 1983) such as “umm”, “uhh”, followed by the new revised text. This would 

yield the following turn, sent to B: 

 

Participant1: Go to the square on the left, next to the big block on top umm next to the third 

column. 

 

The experiment was conducted on native Dutch-speaking participants. We used the following 

editing expressions, which were identified in a previous pilot study: “eeh”,   “eehm”, “euh”, 

“euhm”, “ehm”,  “uh”, “uuh”, “uuhm”, “ik bedoel” (“I mean”), “eh ik bedoel” (“uh I mean”). 

Interventions were performed on both members of a dyad. The editing expression was selected 

randomly. In order to avoid cascades of interventions, a minimum of five turns had to elapse 

after each intervention before a turn by the same participant would be manipulated again.  

 

 

2.3. Measures 

 

The following measures were used: 

 

Description types 

 

Proportion of Matrix descriptions: This measure records whether a participant describes a Maze 

using a Cartesian coordinate schema consisting of rows and columns. Each turn was classified 

as one of three categories:  

 

1. Non spatial descriptions, e.g., “tell me where to go” 

2. Matrix, Cartesian descriptions, e.g., “4,5”, “A1”, “row 3 column 2” 

3. Other, e.g., “the sticking out row”,  “the part that looks like a head”, “big column on 

the right”.  This corresponds to the categories Figural, Path, Line from the original maze 

game (Garrod and Doherty, 1994). 

 

Each maze description was classified independently by both authors. Any conflicting 

classification was discussed and resolved.  

 

 

Performance measures 

 

Task success: The number of mazes completed, which ranges between 0 and 12. 

 

Number of turns: The number of messages typed in the private turn formulation window and 

sent to the other participant. 

 



Turn-length: The length (in characters) of each message. Note that turn-length and number of 

turns measure different properties of the interaction. For example, if participants ground in 

multiple turns (instalments), this would lead to more turns that are also shorter. 

 

Edits: All turns were analyzed to establish whether they had been revised while being typed. 

This measures how much effort participants put into turn-formulation. 

 

Alignment: This records for each spatial description whether it is of the same type (Matrix vs. 

Other) as the description produced by the previous participant.  

 

Additional analyses (see Discussion) 

 

First use of Matrix description: This measure records when (i.e. on which turn number) a dyad 

first uses a Matrix description.   

 

Unique words: This records the number of unique words produced by each participant. 

 

 

2.4. Participants 

 

Participants were recruited from student pools and participated for course credit. Pairs of 

participants were randomly assigned to either the Control condition or Manipulated condition. 

Four pairs were discarded as it turned out they had previously participated in a maze game 

experiment. This resulted in 24 dyads in the Control condition and 33 dyads in the Manipulated 

condition. 

 

 

2.5. Procedure 

 

Pairs were booked for 1-hour slots. They were given written instructions, and then instructed 

verbally. Each pair of participants was asked to complete all 12 games as fast as possible.  The 

nature of the experimental manipulations was not disclosed to participants until the debriefing 

session. All procedures were in accordance with the 1964 Helsinki declaration and were 

reviewed by the Faculty’s Committee for the Ethical Evaluation of Research (CETO). 

 

 

3. Hypothesis and Research question 

 

3.1 Hypothesis 

 

If repair underpins the emergence of abstract descriptions, then analogously to the experiment 

conducted by Healey, Mills, Eshghi (2018), participants who receive amplified signals of self-

repair should use more Matrix descriptions than participants in the Control group. 

 

3.2. Research question 

 

What effect will the manipulation have on performance measures? We see three possibilities. 

The manipulation: 

(1) has no discernible effect (as in Healey, Mills, Eshghi, 2018), or 

(2) increases the amount of “trouble” in the interaction, having a deleterious effect on task 

performance, or 



(3) increases participants’ effort in co-ordinating in the task, having a beneficial effect on 

task performance. 

 

 

 

4. Results 

 

We analyzed the results using R version 3.6.2 (R Core Team, 2017), together with the LME4 

package version 1.1-26 (Bates, Maechler, Bolker and Walker, 2015) and the MASS package v. 

7.3-54 (Ripley, Venables, Bates, Hornik, Gebhardt, & Ripley, 2013). The models included 

random intercepts for dyads, participants, and mazes, as well as random slopes of condition and 

time within mazes. The models were estimated with an unstructured covariance matrix. Since 

we are interested in what the participants type, the artificial, transformed turns generated by the 

server are excluded from analysis; only the original unmodified turns that are intercepted by 

the server are included in the analyses. This resulted in 17627 turns overall.  

 

 

4.1. Description types 

 

In order to test whether participants in the Manipulated condition used more Matrix descriptions 

than participants in the Control condition, we conducted a likelihood ratio test of the model 

with the manipulation effect against the model without manipulation effect. This revealed a 

significant difference (𝜒2 (3) = 8.52, 𝑝 = 0.0364). The predicted probability of Matrix 

descriptions in the Control group is 0.02 [95% CI: 0.00, 0.18]. The predicted probability of 

Matrix descriptions in Manipulated group is 0.34 [95% CI, 0.07, 0.77]. This confirms H1 (see 

Figure 2). 

 

 

Figure 2: Predicted probabilities of Matrix descriptions in Control and Manipulated dyads. 



 

 

4.2. Performance measures 

 

In order to investigate the effect of the manipulations on performance measures, we compared 

models that included/excluded the corresponding predictors. Following Eshghi and Healey 

(2016) and Healey, Mills, Eshghi (2018), we pool the scores for the first six games (EARLY) 

and the last six games (LATE) to provide an index of how the measures change over time. 

Akaike’s Information Criterion (AIC) was used for model comparison, as there was no nesting 

relationship between all models being compared – it was not possible to use a chi-square 

difference test between the different models. The model with the lowest AIC score was 

considered the best-fitting. We report the best-fitting model.  

 

 

Task success 

 

Task success was modelled with a multilevel binomial logistic regression, using glmer with a 

logit link function. The model with the lowest AIC showed a significant effect of the 

manipulation (b = - 0.939 [95% CI: -1.64, -0.238], z = -2.63, p < 0.01) and an effect of time (b 

= 3.66 [95% CI: 1.85, 5.48], z = 3.963, p < 0.001) (see Figure 3). 

 

 

Figure 3: Predicted probability of successfully solving a maze in the games 1-6 and 7-12 

 

 



Turn length 

 

The length of participants’ turns was modelled with a multilevel negative binomial regression, 

using glmer.nb with a log link function. The model with the lowest AIC showed a significant 

effect of time (b = - 0.210 [95%CI: -2.61, -0.158], z = -7.98, p < 0.001).  The predicted mean 

turn length in the first six games is 16.9 [95% CI: 15.8, 18.1] characters, while in the last six 

games the predicted turn length is 13.7 [95% CI: 12.5, 15.0] characters.  

 

 

Number of turns 

 

The number of turns produced by dyads over the course of the experiment was modelled with 

a multilevel negative binomial regression, using glmer.nb with a log link function. The model 

with the lowest AIC showed a significant effect of the manipulation (b = 0.187, [95%CI: 

0.00227, 0.372] , z = 1.984, p = 0.0473) and a significant effect of time (b = -0.512, [95%CI: -

0.593, -0.431], p < 0.001) (see Table 2).   

 

Table 2: Predicted number of turns 

Games  Condition Predicted number of turns 95% CI 

1-6 Control 81 70.19, 93.47 

7-12 Control 48.5 41.8, 56.4 

1-6 Manipulated 97.7 86.4,110.5 

7-12 Manipulated 58.5 51.4, 66.6 

 

 

Deletes  

 

The number of deletes produced by dyads over the course of the experiment was modelled with 

a multilevel logistic regression, using glmer with a logit link function. The model with the 

lowest AIC showed a significant effect of time (b = -0.211, [95%CI, -0.308, -0.116], z = -4.32, 

p < 0.01). The predicted probability of a turn containing a delete is 0.39 [95%CI 0.36, 0.42] in 

the first six games and is 0.34 [95%CI 0.32, 0.37] in the last six games. 

 

 

Semantic alignment 

 

The alignment of participants’ spatial descriptions was modelled with a multilevel logistic 

regression, using glmer with a logit link function. The model with the lowest AIC showed no 

significant effect of the manipulation (b = -1.18 [95%CI: -2.64,0.284], z = -1.68, p = 0.114), 

but showed a significant effect of time (b = 6.16 [95%CI: 2.14, 10.2], z = 3.002, p < 0.001) and 

no significant interaction (b = -1.23, [95%CI: 4.19, 1.735], z = 0.812, p = 0.417). The predicted 

alignment score increases from 0.98 [95% CI: 0.94, 0.99] in the first six games to 1 in the last 

six games. 

 

 

4.3. Additional measures 

 

First use of Matrix descriptions 

 

The first use of Matrix descriptions by a dyad was modelled with a negative binomial regression 

from the MASS package. A likelihood ratio test of the model with the manipulation effect 



against the model without the manipulation effect did not reveal a significant difference (𝜒2 (1) 

= 0.798, 𝑝 = 0.372). The predicted number of turns that elapse before a member of a dyad 

produces a Matrix description is 23.7 [95% CI: 16.5, 34.3]. 

 

 

Number of unique words 

 

The number of unique words was modelled with a multilevel negative binomial regression, 

using the glmer.nb with a log link function. The model with the lowest AIC showed a significant 

effect of the manipulation (b = 0.129 [95%CI: 0.0041, 0.255], z = 2.02, p = 0.0429) and also 

showed a significant effect of time (b = -0.56 [95%CI: -0.645, -0.492], z = -14.6, p < 0.001) 

(see Table 3).  

 

Table 3: Predicted number of unique words 

Games  Condition Predicted unique words 95% CI 

1-6 Control 118.8 108, 131 

7-12 Control 67.3 59.6, 75.9 

1-6 Manipulated 135.2 124.7, 146.6 

7-12 Manipulated 76.6 68.6, 85.5 

 

 

 

5. Discussion 

 

The results confirm the repair-driven view of co-ordination: Dyads whose covert repairs were 

exposed produced more abstract Matrix descriptions.  

       Although the changes in performance measures over time are consistent with the basic 

findings that interlocutors develop increasingly contracted referring expressions and become 

more successful as the task progresses, the effect of the manipulation on task performance is 

puzzling. Consistent with previous research, the manipulation appears to be having a beneficial 

effect on semantic co-ordination. However, unexpectedly, the manipulation also has a 

detrimental effect on task performance (task success and number of turns). Prima facie, this 

conflicts with previous research which has consistently found a positive association between 

abstract descriptions and task success (Garrod and Doherty, 1994; Castillo et al., 2019; Healey, 

Mills, Eshghi, 2018). 

       The immediate questions that arise are: Why are the interventions causing more disruption? 

Why are they causing more abstraction? Might the increased abstraction be causing the 

disruption and/or vice-versa? We identify four possible explanations below. 

 

(a) First, the editing expressions might be directly influencing participants to use more 

abstract descriptions. According to Arnold and Tanenhaus (2011), recipients of turns containing 

such terms are more likely to focus on less familiar items (see also Barr, 2001; Corley, 

MacGregor, and Donaldson, 2007). This could cause manipulated participants to consider 

previously unmentioned maze locations, effectively exposing participants to more exemplars, 

thereby creating a pressure to develop referring schemas that abstract over these exemplars. 

Similarly, the editing expressions could also prompt participants to use less familiar referring 

expressions, accelerating participants’ exploration of the space of possible descriptions. This is 

partially borne out in the additional analyses – manipulated dyads use more unique words, but 

do not appear to be introducing Matrix descriptions any earlier, suggesting that the decrease in 

task performance is not due to participants being induced to use Matrix descriptions 

prematurely, i.e. before they have established sufficient co-ordination to use them successfully. 



 

(b) Second, the deleted text might also have helped participants to uncover sources of 

misalignment (see also Schober, Suessbrick and Conrad, 2018), in particular, concerning how 

to count in the maze. Consider Examples 6-13 below. 

 

Example 6: 

Original text 
drie naar beneden wandelen   

go three down 

Manipulated text 
dan vier of uh drie naar beneden wandelen   

then go four or uh three down 

 

 

Example 7: 

Original text 
drie blokjes van links boven   

three blocks from the left top 

Manipulated text 
Twee blokjes van links boven ehm drie blokjes van links boven 

two blocks from the left top ehm three blocks from the left top 

 

 

Example 8: 

Original text 
en twee blokjes van rechtsonder   

and two blocks from the right bottom 

Manipulated text 
en twee blokjes van link of euh rechtsonder   

and two blocks from the left or uh right bottom 

 

 

Example 9: 

Original text 
Derde blokje van BENEDEn naar BOVEn   

third block from bottom to top 

Manipulated text 
Derde blokje va nboven nar uh  van BENEDEn naar BOVEn   

third block from top to uh from bottom to top 

 

 

Example 10: 

Original text 
3e rij horizontaal van onder   

3rd row horizontal from bottom 

Manipulated text 
3 verti eeh 3e rij horizontaal van onder   

3rd vertical uh 3rd row horizontal from bottom 

 

 

Example 11: 

Original text 
Laatste rij derde blok van links   

last row third block from left 

Manipulated text 
3de rij van links  of eehm Laatste rij derde blok van links   

3rd row from left or uhm last row third block from left 

 

 



In Examples 6 and 7 the deleted text shows that the sender is encountering trouble counting 

rows and nodes, potentially alerting the recipient to this trouble. Example 8 appears to show the 

sender was considering a different origo for counting (counting from bottom left vs. bottom 

right), while similarly Example 9 shows that the sender was originally considering counting 

from top to bottom, as opposed to from bottom to top. In Example 10, the manipulated turn 

refers to both horizontal and vertical row counts, whereas the original turn only shows 

horizontal row counts. Making the deleted text visible could be beneficial for the recipient since 

it provides an impetus for conceptualizing the maze as consisting of horizontal as well as 

vertical rows, which are the constituent elements of Matrix descriptions. Similarly in Example 

11, the sender initially conceptualized the maze as consisting of vertical rows, using (“3rd row 

from left”) to refer to the vertical column which contains two switches and the position marker 

(see Figure 1, P2’s maze) but then changes and uses a different schema that conceptualizes the 

maze as consisting of horizontal rows (“last row third block from left”).  

 

(c) Third, the editing expressions may have focused the recipients’ attention on the 

immediately following words, i.e., the revised text, thereby improving word-recognition (Tree, 

2001; Brennan and Schober, 2001) and recall (Fraundord and Watson, 2011, Corley et al., 2007). 

 

(d) Fourth, the interventions could be causing participants to think their partner is 

experiencing more difficulty than they actually are, inducing them to expend more effort in 

grounding the referring expressions. This effect could be driven by the editing expressions, 

which have been shown to cause participants to appear less confident (Brennan and Williams, 

1995) and as having a poorer grasp of the task (Susca and Healey, 2002). Moreover, many of 

the substitutions were concerned with correcting typos, e.g. 

 
Example 12: 

Original text 
je hebt toch een verticale rij van 7 vakjes   

you do have a vertical row of 7 spaces 

Manipulated text 
je hebt toch een verticale rij van 7 bvalk of ehm vakjes 

you do have a vertical row of 7 bspac or uhm spaces 

 

 

Example 13: 

Original text 
ik ben derde rij van boven helemaal links 

I am third row from top all the way on the left 

Manipulated text 
ik bern d uh ben derde rij van boven helemaal links 

I anm t uh am third row from top all the way on the left 

 

 

In such manipulations, the text is much less readable than the original text and is often garbled. 

This could lead participants to think more negatively of their partner’s ability (Borland and 

Queen, 2016), leading them to “dumb down” and put more effort into their turns in order to 

compensate for the (apparent) decreased skill of their partner (see e.g., Dreisbach and Fischer, 

2014). 

        Relatedly, and more importantly in our view, the effect of the manipulation here is more 

radical than in previous experiments. Here the manipulation renders as purposefully public 

information signals that were not intended to be included in the message sent to the interlocutor. 

Public self-repair in conversation does not only have the function of correcting trouble but can 

also be used strategically by the speaker to perform other actions like marking dispreferred 

responses, serve identity construction, or responsively react to (multimodal) feedback from the 

addressee (see, e.g., Lerner and Kitzinger, 2007, Schegloff, 2010). Under our manipulation, 



such potential strategic uses appear in the public arena for the consideration of the addressee 

while not underpinned by the intentions of the speaker or any reasons based on the interactional 

common ground, e.g. there is no dispreferred response that is mitigated and the reformulations 

are not intended to indicate that the speaker’s original description needs to be taken into account 

by the addressee. It is possible that such non-intended messages have both a local and 

downstream effect on the amount of effort that participants have to expend to disentangle what 

the import of each other’s responses is. This might facilitate coordination in making the 

speaker’s thought process transparent and liable to be corrected (see (a) above), on the one hand, 

but, on the other, it might result in participants having to take more turns to achieve their goal.  

 
 

5.1. Conclusions and future work 

 

In summary, it appears that self-repairs are causing participants to put more effort into 

grounding their referring expressions, whether as a consequence of attributing lower confidence 

to the other interlocutor, or due to the edited text providing participants with more information 

about problems in the task. Participants who received the interventions typed more turns and 

solved fewer mazes, suggesting that they are putting more effort into co-ordinating their 

referring expressions, while the increase in use of unique words suggests that the interventions 

are inducing participants to explore the space of possible referring expressions. Somewhat 

surprisingly, despite using more abstract descriptions, participants are not using them earlier, 

suggesting that the exploration process is not occurring at the level of Matrix descriptions, but 

is presumably occurring at a finer grain, e.g. in clarifying spatial semantics, as in Examples 6-

11. 

        However, it is unclear how the constituent components of the self-repairs contributed to 

the patterns observed. The interventions used a variety of editing expressions, which might have 

had different effects on participants (see, e.g., Clark and Fox Tree, 2002; Womack et al., 2012 

for a discussion). Also, the algorithm for transforming private edits into public self-repairs was 

not sensitive to the content of the messages. This means that many different types of “trouble” 

were made visible, including typos, reformulations, and specifications. Given the current data-

set it is not possible to determine the extent to which the different types of editing expression 

and “trouble” types might have contributed towards the observed pattern.  

        To address these issues, a promising next step would be to use more sophisticated AI-

mediated communication to detect and manipulate specific kinds of “trouble”, e.g. solely 

manipulating typos or reformulations of Matrix descriptions. This approach could be 

augmented by using an incremental WYSIWYG chat interface which displays characters as 

they are typed (Ziembowicz and Nowak, 2019; Maraev, Mazzocconi, Mills, Howes, 2020), 

which would be amenable to artificially and automatically manipulating public turn-edits in 

real-time.  
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